

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

L. 1 MR2-Exam/End Sem MAY 2025/june 2025

Program: Mechanical

sem III

Duration: 3 Hrs

Course Code: PE-BTM 733

Maximum Points: 100

Notes: Solve any five questions

Course Name: Industrial Robotics

Semester: VIII

Assume Suitable data

251 1975

Q.No.	Questions	Points	СО	BL	ΡI
1	 a) Discus the Work Space Envelope in details b) Discuss different types of drives in Robotics c) Define Robot and discuss Robotic Manipulator d) Discuss the three laws of the Robots 	20	1,2	I,III,V	1.5.1
	Assign frames {0} to {4} for the shown non planar 3R robotic manipulator, then find the DH parameters table.				
2a	· · · · · · · · · · · · · · · · · · ·	10	2	I	1.6.1
	De 1 1				
	Develop 2R Robot, find the Jacobian matrix using Direct Differtiation Method relative to frame {0} to frame {3}				
2 b	(0) 00	10	2	VI	5.4.1
3a	Explain Equivalent Single-Axis Representation matrix and Z-Y-X Euler angles with suitable examples.	10	1	Ш	1.6.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Pe-Eran/End Sem MAY 2025 / Sune 2025

	Explain the Forward kinematics and obtain the total transformation matrix from frame {0} to frame {n}. Obtain for the DH parameters and calculate the transformation matrices with suitable example				
3b		10	2	v	5.4.1
4a	Discuss the Inverse Kinematics and explain the existence of solution of the inverse kinematics problems with suitable examples.	10	3	VI	1.6.1
4b	Explain the Robot Learning and Task Planning and the Robot Intelligence, Problem Solving in brief.	10	3	III	5.4.1
5a	Discuss the Velocity Propagation Method with suitable example.	10	3	II	1.6.1
5b	Discuss the Robotics applications in Manufacturing such as: Material transfer, Material loading and unloading, Assembly and inspection	10	3	VI	1.6.1
ба	Discuss the Social issues and Economics of Robots. Name the different types of Industrial Robots use commonly use.	10	3	IV	5.4.1
6 b	Explain the different types of sensors used in the Industrial Robots and Discuss the steps involved in the design of the Industrial Robots	10	3	III	5.4.1
7a	Explain different drives used in the Robots and the classification based on types of motion control	10	4	III	5.1.2
7b	Explain the Robot Anatomy and discuss the factors which determine Work space Envelope.	10	4	III	5.1.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Re-EAGM End Sem - MAY 2025 JUNE 2025

B.T.W.
Program: Mechanical

Course Code: PE-BTM 733

Course Name: Industrial Robotics

Notes: Solve any five questions

Duration: 3 Hrs

Maximum Points: 100

Semester: VIII

2015/25

Q.No.	Questions	Points	со	BL	PI
1	a) Discus the Automation in details b) Discuss the AI and Role of AI in Robotics c) Define Robot and enlist types of grippers d) Discuss the Classification of the Robots	20	1,2	I,III,V	1.5.1
	For the shown no-planar $3R$ manipulator, demonstrate the non-uniqueness of frame assignments and corresponding DH parameters for the two possible choices of Z_2 -axis direction and two possible choices of X_1 -axis direction.			2,,	1.0.1
0-	4 4 4				
2a	Assign frames {0} to {4} for the shown planar 3R (RRR) robotic manipulator, then find the DH parameters tables.	10	2	I	1.6.1
2b	u j	10	2	VI	5.4.1
Ba	Explain X-Y-Z Fixed Angles, Z-Y-X Euler Angles and the Equivalent Single-Axis Representation with suitable examples.	10	1	III	1.6.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

- RE - Kam | End Sem - MAY 2025 | June 2025

	Explain the Forward kinematics and obtain the total transformation matrix from frame $\{0\}$ to frame $\{n\}$. Obtain for the shown RPR robotics manipulator the DH parameters and calculate the transformation matrices ${}_{1}^{0}T$, ${}_{2}^{1}T$, ${}_{3}^{2}T$, ${}_{4}^{3}T$ and find ${}_{4}^{0}T$.				
3b		10	2	v	5.4.1
4a	Discuss the Inverse Kinematics and explain the solvability of the inverse kinematics problems with suitable examples.	10	3	VI	1.6.1
4b	Explain the Robot Intelligence, Problem Solving, Robot Learning and Task Planning in brief.	10	3_	Ш	5.4.1
5a	Explain the Jacobian and Discuss the Jacobian using Velocity Propagation Method with suitable example.	10	3	II	1.6.1
5b	Discuss the Robotics applications in Manufacturing such as: Material transfer, Material loading and unloading, Assembly and inspection	10	3	VI	1.6.1
	Develop 2R Robot, find the Jacobian matrix using Direct Differtiation Method relative to frame {0} to frame {3}	10	3	IV	5.4.1
ба	Explain the specification of the Robot and	10	- 3	10	0.1.1
6b	different drives used in the Robots	10	3	III	5.4.1
7a	Explain the different types of sensors used in the Industrial Robots and Discuss the steps involved in the design of the Industrial Robots	10	4	III	5.1.2
7b	Discuss the Social issues and Economics of Robots. Name the different types of Industrial Robots use commonly.	10	4	Ш	5.1.2

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 4

23/6/25

END SEM/RE-EXAM EXAMINATION MAY/JUNE 2025

BTW Det Program: MECHANICAL ENGINEERING Dem VM Duration: 03 Hrs

Maximum Points: 100

Course Name: Welding Process And Welding Technology

Semester: VIII

Notes:

1. Question no 1 is compulsory

Course Code: PE-BTM735

2. Attempt any four questions from the remaining six questions.

3. If necessary assume suitable data with justification

4. Draw neatly labeled sketches wherever required.

Q. No.		Points	СО	BL	Mod ule No
Q1	A. A 50 mm diameter solid shaft is welded to a flat plate as shown in Figure. If the size of the weld is 15 mm, find the maximum normal and shear stress in the weld. 20 kN 250 mm	10	2	3	2
	B. An arc welding DC power source has a linear power source characteristic with open circuit voltage V ₀ =80 Volts and I _s =1150amps. The voltage length characteristic of the arc has given by V=40+5L Volt where L is the arc length in mm. Calculate the optimum length of arc for obtaining max. arc power at welding. What voltage and current setting should be done on the power source for max.arc power. Also calculate net heat input for process if the arc heat transfer efficiency is 0.86 and welding speed is 7mm/sec.	10	1,4	4	5
!	A. Analyze and Evaluate the most suitable welding process for reducing fuel consumption in lightweight aircraft, automotive, and	06	1,4	5	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025

1	1 1 111			,	· ——
	shipbuilding applications where filler materials are not required, providing justification for its selection, and examine the criteria for tool pin design necessary for achieving optimal weld quality.				
	B. Considering MIG welding, analyze the role of shielding gases such as Argon, CO ₂ , Helium, and their mixtures. How do these gases influence arc stability, metal transfer mode, heat input, and overall weld quality for different base metals?	06	4	3	3
	C. A gas tank consists of a cylindrical shell of 185cm inner radius. It is enclosed by hemispherical shells by means of butt welded joint as shown in Figure. The thickness of the cylindrical shell as well as the hemispherical cover is 1.4 cm. Determine the allowable internal pressure (MPa) to which the tank may be subjected, if the permissible tensile stress in the weld is 105 N/mm². Assume efficiency of the welded joint as 0.82.	08	2,3	4	2
3	A Describe electrode polarities in GTAW using AC and DC power sources. Discuss their influence on penetration, heat distribution, and cleaning action. Recommend appropriate	8	4,1	3,4	3
	B. Analyze the advantages and limitations of the Electron Beam Welding (EBW) process compared to other fusion	06	3	4	4
	welding methods. How do beam parameters and vacuum conditions influence penetration depth, heat-affected zone, and weld quality?				
	C. Draw a graph showing the relationship between different welding processes and the corresponding tensile strength in increasing order, and analyze why some welding processes result in higher tensile strength than others by applying your understanding of welding parameters such	06	4	3	1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbar – 4

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025

	as heat input, power den metallurgical changes aft	sity, cooling rate, and associated fecting weld quality.				
4	A. Compare and contrast the functional behavior of we following types:	e chemical composition and elding electrode coatings for the	10	1,3,4	2	6
	 Iron oxide-sodium Cellulose-sodium Low hydrogen-sodium Rutile-iron powder. Apply your understanding to influences arc stability, pene varying welding conditions 	evaluate how each type tration, and weld quality under				
	plate by a single transverse as shown in Figure. The man 82 MPa and 62 MPa res	2.5 mm thick is joined with another weld and a double parallel fillet weld ximum tensile and shear stresses are pectively. Find the length of each joint is subjected to both static and	10	2	6	2
	P	75 mun				
		ion factor for welded joints.				
	Type of joint	Stress concentration factor				
	1. Reinforced butt welds	1.2				
	2. Toe of transverse fillet welds	1.5				
	3. End of parallel fillet weld	2.7				
	4. T-butt joint with sharp corner	2.0				
5	electrode positive polarit and weld speed are 150 A A metallic wire electrode at a constant rate of 12 m and melting temp of the 500 J/kg and 1530°C res	I arc welding with direct current ty, the welding current, voltage , 30 V and 6 m/min respectively. of diameter 1.2 mm is being fed n/min. The density, specific heat wire electrode are 7000 kg/m3, spectively. Assume the ambient glect the latent heat of melting.	10	2,4	4	5

Ehrrauya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

END SEM/RE EXAM EXAMINATION MAY / JUNE 2025

	available for melting of the wire electrode. Find melting efficiency (in percentage) of the wire electrode.				
	B. Explain following NDT of welded joints with schematic diagram. I. Magnetic particle test II. Ultrasonic reflection approach.	10	4	2	7
6	II. Ultrasonic reflection approach. A. Analyze the structural and functional differences among	ΛQ	1.4	3	-
	the following types of electrodes: 1. Bare Electrodes 2. Light Coated Electrodes 3. Shielded Arc or Heavy Coated Electrodes.	08	1,4	3	6
	B. Why SAW considered more efficient compared to other arc welding processes? Additionally, explain how the following process parameters affect weld quality when all other process parameters are kept at their optimum values in SAW:i) Discuss the impact of high and low welding currents on weld quality. ii) Elaborate on the effects of a long arc length and a short arc length on weld quality. Support your answers with relevant examples or reasons for the observed effects.	06	3,4	4	3
	C. Examine the role of welding in manufacturing processes and compare it with other common joining methods such as brazing, soldering, and adhesive bonding in terms of strength, temperature requirements, and applications; further, explain the concepts of autogenous and heterogeneous welds, and analyze the conditions under which each type is preferred to achieve optimum weld quality.	06	1	3,4	l
7	A. Identify and analyze five common weld defects encountered in different welding processes. For each defect, provide a detailed explanation of its causes, illustrate with clear schematic diagrams, and recommend practical remedies. Justify the effectiveness of each remedy and explain how it aids in minimizing or eliminating the occurrence of these defects in future welds	10	1,4	6	7
	 B. Volt ampere characteristic is given by I² = -550(V - 60). Arc characteristic is given as Ia = 20(V - 16). Here, I is in Amperes and V is in Volts. Find the power of the stable arc in kW. 	05	2	5	5

Bharottys, "orden Huavan"s

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025

_					
C.	Explain the generation of the laser in a laser welding	05	1,4	3	4
	machine, incorporating a schematic diagram to illustrate				
	the process. Furthermore, discuss the various types of				
	modes associated with the generated laser, considering				
	their characteristics and applications.				

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

END SEM/RETEXAM EXAMINATION MAY / JUNE 2025

Program: MECHANICAL ENGINEERING DEW VIII

Duration: 03 Hrs

Course Code: PE-BTM735

Maximum Points: 100

Course Name: Welding Process And Welding Technology

Semester: VIII

Notes:

1. Question no 1 is compulsory

2. Attempt any four questions from the remaining six questions.

3. If necessary assume suitable data with justification

4. Draw neatly labeled sketches wherever required.

	1
. 2	725
141) []
$I \cap I$	•

Q. No.		Points	СО	BL	Mod ule No
Q1	A. A 50 mm diameter solid shaft is welded to a flat plate as shown in Figure. If the size of the weld is 15 mm, find the maximum normal and shear stress in the weld. 10 kN 200 mm 50 mm		2	3	2
	B. An arc welding DC power source has a linear power source characteristic with open circuit voltage V0=85 Volts and Is=1250amps. The voltage length characteristic of the arc has given by V=40+5L Volt where L is the arc length in mm. Calculate the optimum length of arc for obtaining max. arc power at welding. What voltage and current setting should be done on the power source for max.arc power. Also calculate net heat input for process if the arc heat transfer efficiency is 0.86 and welding speed is 7mm/sec.		1,4	4	5
2	A. Analyze and Evaluate the most suitable welding process for reducing fuel consumption in lightweight aircraft, automotive, and shipbuilding applications where filler materials are not required, providing justification for its selection, and examine	06	1,4	5	4

SARDAR PATEL COLLEGE OF ENGINEERING

_ **_** (\)

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

	the criteria for tool pin design necessary for achieving optimal weld quality.	•			
	B. Analyze the effect of electrode extension on welding current by drawing a graph for different electrode diameters (1.2 mm and 1.8 mm) at electrode extensions of 10 mm and 18 mm. Explain how the welding current is characterized for each case in the MIG welding process, considering the influence of electrode extension and diameter.	06	4	4	3
	C. A gas tank consists of a cylindrical shell of 185cm inner radius. It is enclosed by hemispherical shells by means of butt welded joint as shown in Figure. The thickness of the cylindrical shell as well as the hemispherical cover is 1.4 cm. Determine the allowable internal pressure (MPa) to which the tank may be subjected, if the permissible tensile stress in the weld is 105 N/mm². Assume efficiency of the welded joint as 0.82.	08	2,3	4	2
3	A. Explain the types of electrode polarity used in GTAW with DC and AC power. How do they affect weld penetration, oxide cleaning, and heat concentration? Suggest suitable polarity for welding aluminum and stainless steel	8	4,1	3,4	3
	B. With a schematic diagram, explain the concept of the Electron Beam Welding (EBW) process. Analyze why the entire welding operation is carried out in a vacuum, and how this affects weld quality and process efficiency.	06	3	4	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 4

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025

	causes of arc blow, and	rc blow in arc welding. Analyze the discuss its effects on weld quality. nimized during welding operations?	06	3,4	4	3
4	electrode ingredients for a l. Cellulose-sodium 2. Rutile-sodium 3. Low hydrogen-sodium 4. Rutile-iron powder.	at properties influence electrode	10	1,3	2	6
	plate by a single transver weld as shown in Figur stresses are 70 MPa and 5	12.5 mm thick is joined with another rese weld and a double parallel fillet re. The maximum tensile and shear 66 MPa respectively. Find the length ld, if the joint is subjected to both	10	2	6	2
	Tobles Strong con con	75 mm P				
	Type of joint	tration factor for welded joints. Stress concentration factor				
	1. Reinforced butt welds	1.2				
	2. Toe of transverse fillet	1.5				
	welds 3. End of parallel fillet weld	2.7				
	4. T-butt joint with sharp corner	2.0				
5	electrode positive polarity weld speed are 150 A, 3 metallic wire electrode of constant rate of 12 m/m melting temp of the wire and 1530°C respectively. 30°C and neglect the later	al arc welding with direct current v, the welding current, voltage and 0 V and 6 m/min respectively. A diameter 1.2 mm is being fed at a in. The density, specific heat and electrode are 7000 kg/m3, 500 J/kg. Assume the ambient temp to be at heat of melting. Further consider rical power is available for melting	10	2,4	4	5

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai –4

END SEM/RE-EXAM EXAMINATION MAY / JUNE-2025

	of the wire electrode.find melting efficiency (in percentage) of the wire electrode.				
	B. Explain following NDT of welded joints with schematic diagram. I. Magnetic particle test II. Ultrasonic transmission approach testing.	10	4	2	7
6	A. Apply your understanding of electrode classifications to explain the characteristics and applications of the following types:	08	1,4	3	6
	 Bare Electrodes Light Coated Electrodes Shielded Arc or Heavy Coated Electrodes. 				
	B. Explain the generation of the laser in a laser welding machine, incorporating a schematic diagram to illustrate the process. Furthermore, discuss the various types of modes associated with the generated laser, considering their characteristics and applications.		1,4	3	4
	C. Examine the role of welding in manufacturing processes and compare it with other common joining methods such as brazing, soldering, and adhesive bonding in terms of strength, temperature requirements, and applications; further, explain the concepts of autogenous and heterogeneous welds, and analyze the conditions under which each type is preferred to achieve optimum weld quality.			3,4	1
7	A. Examine various types of weld defects in welding. Select five specific defects, elucidate their causes with schematic diagrams, and propose effective remedies for each. Justify the chosen remedies and discuss how they contribute to defect prevention.		1,4	6	7
	B. Volt ampere characteristic is given by I² = -600(V - 60). Arc characteristic is given as Ia = 20(V - 16). Here, I is in Amperes and V is in Volts. Find the power of the stable arc in kW.	05	2	5	5
	C. Draw a graph showing the relationship between different welding processes and the corresponding tensile strength in increasing order, and analyze why some welding processes result in higher tensile strength than others by applying your understanding of welding parameters such as heat input, power density, cooling rate, and associated metallurgical changes affecting weld quality.		4	3	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Mushi Nagar, Andhori (W) Mumhai - 400058

END SENI/RE-EXAM EXAMINATION NEW / JUNE 2025

Program: Final Year B. Tech.(C/E/M)

Duration: 3 Hours

Course Code: OE-BTM712

Maximum Points: 100

my 161

Course Name: Introduction to Research Methodology

Semester: VIII

Notes:

1. Attempt any 5 questions out of the given 7.

2. Each question carries 20 marks (2 sub-questions of 10 marks each).

3. If you choose to attempt Q.1(a), you must also attempt Q.1(b) — sub-questions must be answered in pairs.

Q.No.	Questions	Points	СО	BL	Module No.
Q1(a)	You are part of a research team developing a sustainable energy solution. During your work, you discover your colleague is manipulating data. Discuss how guiding principles of research ethics can help you respond to this situation, and suggest steps to handle it ethically.	10	2	5	I
Q1(b)	Differentiate between the general steps of the research process and the steps in research methodology with suitable engineering examples. Why is it important to understand both when planning a research project?	10	1	4	1
Q2(a)	In a medical device testing study, a researcher concludes a new device is effective when it is actually not. Identify this type of error, and explain the consequences of Type I and Type II errors using engineering research examples.	10	1	4	1
Q2(b)	Explain with engineering examples how dependent and independent variables are identified in an experimental study.	10	3	3	2
Q3(a)	You are assigned a research project in your domain (Civil/Mechanical/Electrical). Justify the need for conducting a thorough literature survey before beginning experimental work. Support your answer with examples.				3
Q3(b)	You are tasked with writing both a review paper and a research paper on a technological advancement (e.g., AI in Smart Grids for Electrical Engineering, AI in Construction Management for Civil Engineering, or AI in Manufacturing for Mechanical Engineering). Discuss the differences in structure, purpose, and literature review approach between the two types of papers. How	10	4	4	3

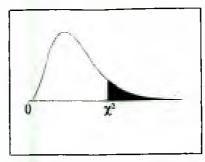
SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025

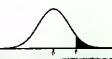
	eng	uld the	ese di ng dor	ifferen main?	ices a	pply	to the	topi	c in	your	specifi	С			
Q4(a)	rese disc	arch.	Provi hen ea	de en .ch wo	gineer uld be	ring-re e prefe	elated erable	exam	ples	of ea	arces in ch and tudy on	i	2	4	4
Q4(b)	usin unst Cho	ard ele g the ructure	etric v interv ed inte e most	vehick i ew n erview	es. W nethod s, and	hat wo l, telep l ques	ould b phonic tionna	oe the c metl aires f	key d od, s or dat	iffere tructu a coll	ehavion nces in red vs ection? justify	1			•
	Com	pute ti	he ran	k corr	elatio	n coef	ficien	t for t	he foll	owing	g data:				
Q5(a)	X	56	75	45	71	62	64	58	80	76	61	10	1	4	5
	Y	66	70	40	75	65	56	59	77	67	63				
_	(X) in the 1965	n crore ousand	es of r	upees ng vai	and the	ne com	respor	nding	war ça	sualti	nditure les (Y) War of				•
		tary E in cro		liture ((X)		ar Cas	sualtie de)	s (Y)	(in					
	100					15									
(5(b)	150					18						10	1	4	5
	200					22									
	250			-	-	28		-							
	300					32									
	350				_	40				-	\neg				
	400	 					45								
j	450					50									

SARDAR PATEL COLLEGE OF ENGINEERING



(Government Aided Autonomous Institute) Muosi i Nazar Andhori (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025


		ENI	r SEM/	RE-EXA	AM EXA		ION DEET /		T		
		of casualties	regression based o	on line of You military on line of	expenditu X on Y, i.e	re. e., estimat	the number e the military				
H		expenditure The following	based of ng mista	kes per pa	ge were of	oserved in	a book.				
		Mistakes per Page	0	1	2	3	4				
7		No. of	211	90	19	5	0	10	1	4	6
	Q6(a)	Assuming Poisson dis the goodne	tribution	, fit a Pois	son distrib	ution to th	ge follows a e data and test				
	Q6(b)	observed v	as measu alues we 198, 790, est, test	ared on a sere: , 803, 800,	ample of 1 799, 801, e average	825, 818	ed carbon fiber ens. The ength of the IPa at the 5%	10	1	4	6
	Q7(a)	Out Did	ow does of the	acknowled research,	lging thes and wha	e limitatio	in a research ons improve the they play in	10	4	5	7
	Q7(b)		hy is it o can thes	essential to e suggesti	outline t	uture rese	pe in a research arch directions a academic and	, I 10	4	5	7

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2=\chi^2_{\alpha}$.

									· · · · · · · · · · · · · · · · · · ·	
df	$\chi^{2}_{.995}$	$\chi^2_{.990}$	$\chi^2_{.975}$	$\chi^2_{.950}$	$\chi^2_{.900}$	$\chi^2_{.100}$	$\chi^2_{.050}$	$\chi^{2}_{.025}$	$\chi^2_{.010}$	$\chi^2_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	$17.\overline{275}$	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	5 9.3 42	63.691	66.766
50	27.991	29.707	32 .357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.7 39	55.329	85.527_	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

Cri	tical V	alues	for Stu	ident's	t-Dietr	ibution	١.		<u> </u>	
- ~							Pr(T > t)		
df	0.2	0.1	0.05	0.04	0.03	0.025	0.02	0.01	0.005	0.000
1	1.376	3.078	6.314	7.916	10.579	12.706	15.895	31.821	63.657	636.61
2	1.061	1.886	2.920	3.320	3.896	4.303	4.849	6.965	9.925	31.59
3	4	1.638		2.605	2.951	3.182	3.482	4.541	5.841	12.92
4	0.941	1.533		2.333	2.601	2.776	2.999	3.747	4.604	8.61
5	0.920	1.476	2.015	2.191	2.422	2.571	2.757	3.365	4.032	6.86
6	0.906	1.440	1.943	2.104	2.313	2.447	2.612	3.143	3.707	5.95
7	0.896	1.415	1.895	2.046	2.241	2.365	2.517	2.998	3.499	5.40
8	0.889	1.397	1.860	2,004	2.189	2.306	2.449	2.896	3.355	5.04
9 10	0.883	1.383	1.833	1.973	2.150	2.262	2.398	2.821	3.250	4.78
	0.879	1.372	1.812	1.948	2.120	2.228	2.359	2.764	3.169	4.58
11	0.876	1.363	1.796	1.928	2.096	2.201	2,328	2.718	3.106	4.43
12	0.873	1.356	1.782	1.912	2.076	2.179	2.303	2.681	3.055	4.31
13	0.870	1.350	1.771	1.899	2.060	2.160	2.282	2.650	3.012	4.22
14	0.868	1.345	1.761	1.887	2.046	2.145	2.264	2.624	2.977	4.14
15	0.866	1.341	1.753	1.878	2.034	2.131	2.249	2.602	2.947	4.07
16	0.865	1.337	1.746	1.869	2.024	2.120	2.235	2.583	2.921	4.01
17	0.863	1.333	1.740	1.862	2.015	2.110	2.224	2.567	2.898	3.96
18	0.862	1.330	1.734	1.855	2.007	2.101	2.214	2.552	2.878	3.92
19	0.861	1.328	1.729	1.850	2.000	2.093	2.205	2.539	2.861	3.88
20	0.860	1.325	1.725	1.844	1.994	2.086	2.197	2.528	2.845	3.85
21	0.859	1.323	1.721	1.840	1.988	2.080	2.189	2.518	2.831	3.81
22	0.858	1.321	1.717	1.835	1.983	2.074	2.183	2.508	2.819	3.79
23	0.858	1.319	1.714	1.832	1.978	2.069	2.177	2.500	2.807	3.76
24	0.857	1.318	1.711	1.828	1.974	2.064	2.172	2,492	2.797	3.74
25	0.856	1.316	1.708	1.825	1.970	2.060	2.167	2.485	2.787	3.72
26	0.856	1.315	1.706	1.822	1.967	2.056	2.162	2.479	2.779	3.70
27	0.855	1.314	1.703	1.819	1.963	2.052	2.158	2.473	2.771	3.69
28	0.855	1.313	1.701	1.817	1.960	2.048	2.154	2.467	2.763	3.67
29	0.854	1.311	1.699	1.814	1. 9 57	2.045	2.150	2.462	2.756	3.65
30	0.854	1.310	1.697	1.812	1.955	2.042	2.147	2.457	2.750	3.64
31	0.853	1.309	1.696	1.810	1.952	2.040	2.144	2.453	2.744	3.63
32	0.853	1.309	1.694	1.808	1.950	2.037	2.141	2.449	2.738	3.62
33	0.853	1.308	1.692	1.806	1.948	2.035	2.138	2.445	2.733	3.61
34	0.852	1.307	1.691	1.805	1.946	2.032	2.136	2.441	2.728	3.60
35	0.852	1.306	1.690	1.803	1.944	2.030	2.133	2.438	2.724	3.59
36	0.852	1.306	1.688	1.802	1.942	2.028	2.131	2.434	2.719	3.58
37	0.851	1.305	1.687	1.800	1.940	2.026	2.129	2.431	2.715	3.57
38	0.851	1.304	1.686	1.799	1.939	2.024	2.127	2.429	2.712	3.56
39	0.851	1.304	1.685	1.798	1.937	2.023	2.125	2.426	2.708	3.55
40	0.851	1.303	1.684	1.796	1.936	2.021	2.123	2.423	2.704	3.55
41	0.850	1.303	1.683	1.795	1.934	2.020	2.121	2.421	2.701	3.54
42	0.850	1.302	1.682	1.794	1.933	2.018	2.120	2.418	2.698	3.53
43	0.850	1.302	1.681	1.793	1.932	2.017	2.118	2.416	2.695	3.53
44	0.850	1.301	1.680	1.792	1.931	2.015	2.116	2.414	2.692	3.52
45	0.850	1.301	1.679	1.791	1.929	2.014	2.115	2.412	2.690	3.52
46	0.850	1.300	1.679	1.790	1.928	2.013	2.114	2.410	2.687	3.51
47	0.849	1.300	1.678	1.789	1.927	2.012	2.112	2.408	2.685	3.51
48	0.849	1.299	1.677	1.789	1.926	2.011	2.111	2.407	2.682	3.50
49	0.849	1.299	1.677	1.788	1.925	2.010	2.110	2.405	2.680	3.50
50	0.849	1.299	1.676	1.787	1.924	2.009	2.109	2.403	2.678	3.49
60	0.848	1.296	1.671	1.781	1.917	2.000	2.099	2.390	2.660	3.46
70	0.847	1.294	1.667	1.776	1.912	1.994	2.099	2.390	2.648	3.43
80	0.846	1.292	1.664	1.773	1.908	1.990	2.088	2.374	2.639	3.41
90	0.846	1.291	1.662	1.771	1.905	1.987	2.084	2.368	2.632	3.40
100	0.845	1.290	1.660	1.769	1.902	1.984	2.081	2.364	2.626	3.39
120	0.845	1.289	1.658	1.766	1.899	1.980	2.076	2.358	2.617	3.37
L40	0.844	1.288	1.656	1.763	1.896	1.977	2.073	2.353	2.611	3.36
180	0.844	1.286	1.653	1.761	1.893	1.973	2.069	2.347	2.603	3.34
200	0.843	1.286	1.653	1.760	1.892	1.972	2.067	2.345	2.601	3.34
500	0.842	1.283	1.648	1.754	1.885	1.965	2.059	2.334	2.586	3.31
000	0.842	1.282	1.646	1.752	1.883	1.962	2.056	2.330	2.581	3.30
20	0.842	1.282	1.645	1.751	1.881	1.960	2.054	2.326	2.576	3.29

Confidence Level

Note: $t(\infty)_{\alpha/2} = Z_{\alpha/2}$ in our notation.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION MAY / JUNE 2025

Program: Final Year B. Tech.(C/E/M)

Lem vill

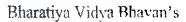
Duration: 3 Hours

Maximum Points: 100

Semester: VIII

Course Code: OE-BTM712

Course Name: Introduction to Research Methodology


Notes:

1. Attempt any 5 questions out of the given 7.

2. Each question carries 20 marks (2 sub-questions of 10 marks each).

3. If you choose to attempt Q.1(a), you must also attempt Q.1(b) — sub-questions must be answered in pairs.

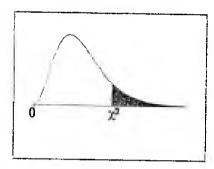
Q.No.	Questions	Points	СО	BL	Module No.
Q1(a)	As a graduating engineer, you are assigned to work on a rural infrastructure project. Discuss how your role as a researcher can contribute to solving societal challenges in such a project. Provide examples to justify your viewpoint.	10	1	4	1
Q1(b)	Consider a project aimed at analyzing the performance of electric vehicles. How would an objective approach differ from a subjective approach in conducting this research? Discuss with suitable technical examples.	10	3	4	1
Q2(a)	You are asked to investigate the causes of frequent delays in a metro rail project. Describe how you would define a research problem for this situation, outlining the specific steps involved. Justify why each step is important.	10	1	3	1
Q2(b)	Explain with engineering examples how dependent and independent variables are identified in an experimental study.	10	3	3	2
Q3(a)	You are assigned a research project in your domain (Civil/Mechanical/Electrical). Justify the need for conducting a thorough literature survey before beginning experimental work. Support your answer with examples.	10	1	3	3
Q3(b)	You are tasked with writing both a review paper and a research paper on a technological advancement (e.g., AI in Smart Grids for Electrical Engineering, AI in Construction Management for Civil Engineering, or AI in Manufacturing for Mechanical Engineering). Discuss the differences in structure, purpose, and literature review approach between the two types of papers.	10	4	4	3



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/REEXAM EXAMINATION MAY / JUNE 2025

		would neering			rence	s appl	pecific								
Q4(a)	Expl how	ain the	e impo pacts	ortance	e of securac	electin y and	ig the I relia	<mark>app</mark> ro bility	priate of y	meth	nethod. od and search	10	3	3	4
Q4(b)	towa using unstr Choo	rd elect the interior	etric v ntervi d inte most	ehicle ew m rview	es. Whethod ethod s, and	nat wo telep	ould be shonic tionna	e the meth ires fo	key d lod, s or dat	ifferer tructur a colle	chavior nees in red vs. ection? justify				4
***************************************	corre	spond ulate K	ing a	ınnual	mai	ntenai	ice c	ost (in ₹	thous	nd the sands).				
Q5(a)	X	56	75	45	71	62	64	58	80	76	61	10	1	4	5
	Y	66	70	40	75	65	56	59	77	67	63				
Q5(b)	(in chour year	A research firm is studying the relationship between temperatu (in degrees Celsius) and electricity consumption (in kilowal hours) in a city during summer. The data for five months of the year 2022 is as follows: Month									of the		1	4	5
	Jun July				30 32				00 20						
		gust			34				40						
	1 1				35				260						
	-	tober	<u>,1</u>				35 260 230								


(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/REFERAM EXAMINATION MAY / JENE 2025

										<u> </u>
	ii)	Electric Estimate	nber, whe	nption on '	Temperati Imption fo					
	The followi	ng mista	kes per pa	ge were ol	bserved in	a book.				
	Mistakes per Page	0	1	2	3	4				
(a)	No. of Page	211	90	19	5	0] 10	1	4	6
	_	ribution	, fit a Poiss	son distrib	ution to th	age follows a e data and tes				
	The tensile material wa observed va	s measu	red on a sa	_	-	d carbon fiberns. The	r			
Q6(b)	812, 805, 7	98, 790,	803, 800,	799, 801,	825, 818		10	1	4	6
•	Using a t-te carbon fibe significance	r materia				ngth of the Pa at the 5%				
Q7(a)		s work to	gether to e	effectively	convey th	How do these e findings and	l l	4	4	7
Q7(b)	report. Wha	it should adings a	be include re clearly	ed in this s	ection to	in a research ensure that the communicated	10	4	4	7

Pg 3/3

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^2=\chi^2_{\alpha}.$

			, 								
df	X.995	X.990	χ ² _{.975}	X.950	$\chi^2_{.900}$	$\chi^{2}_{.100}$	$\chi^2_{.050}$	X ² .025	$\chi^{2}_{.010}$	χ ² _{.005}	Ì
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879	٥
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597	ļ
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838	1
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860	
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750	
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548	1
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278	ļ
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955	
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589	
10	2.156	2.558	3:247	3.940	4.865	15.987	18.307	20.483	23.209	25.188	
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757	1
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300	
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819	
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319	
15	4.601	5.229	6.262	7.261	8.547	22:307	24.996	27.488	30.578	32.801	
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267	1
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718	-
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34,805	37.156	
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582	
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997	l
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401	ı
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796	1
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181	l
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559	ı
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928	1
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290	1
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645	
28	12 .461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993	
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336	ĺ
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672	
40	20.707	22.164	24.433	26.509	29.051	51.805	55.7 58	59.342	63.691	66.766	1
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490	
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952	
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215	
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321	1
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299	
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169	

Critical Values for Student's t-Distribution.

_Cn	ticai v	arues i	or Stu	dent's	t-Distr	ibution	l <u>. </u>		6	•
	1			Linn	or Tail Dr	ahahilitus	Pr(T > t	`		
df	0.2	0.1	0.05	0.04	0.03				0.005	0.000
	0.2		0.00			0.025	0.02	0.01	0.005	0.0005
1	1.376	3.078	6.314	7.916	10.579	12.706	15.895	31.821	63.657	636.619
2	1.061	1.886	2.920	3.320	3.896	4.303	4.849	6.965	9.925	31.599
3		1.638	2.353	2.605	2.951	3.182	3.482	4.541	5.841	12.924
4		1.533								
			2.132	2.333	2.601	2.776	2.999	3.747	4.604	8.610
5		1.476	2.015	2.191	2.422	2.571	2.757	3.365	4.032	6.869
6		1,440	1.943	2.104	2.313	2.447	2.612	3.143	3.707	5.959
7	0.896	1.415	1.895	2.046	2.241	2.365	2.517	2.998	3.499	5.408
8	0.889	1.397	1.860	2.004	2.189	2.306	2.449	2.896	3.355	5.041
9		1.383	1.833	1.973	2.150					
						2.262	2.398	2.821	3.250	4.781
10	0.879	1.372	1.812	1.948	2.120	2.228	2.359	2.764	3.169	4.587
-11	0.876	1.363	1.796	1.928	2.096	2.201	2.328	2.718	2 100	4 400
12		1.356	1.782						3.106	4.437
				1.912	2.076	2.179	2.303	2.681	3.055	4.318
13		1.350	1.771	1.899	2.060	2.160	2.282	2.650	3.012	4.221
14		1.345	1.761	1.887	2.046	2.145	2.264	2.624	2.977	4.140
15	0.866	1.341	1.753	1.878	2.034	2.131	2.249	2.602	2.947	4.073
16	0.865	1.337	1.746	1.869	2.024	2.120	2.235	2.583	2.921	4.015
17		1.333	1.740	1.862	2.015	2.110				
	4						2.224	2.567	2.898	3.965
18		1.330	1.734	1.855	2.007	2.101	2.214	2.552	2.878	3.922
19		1.328	1.729	1.850	2.000	2.093	2.205	2.539	2.861	3.883
20	0.860	1.325	1.725	1.844	1.994	2.086	2.197	2.528	2.845	3.850
61	0.050									
21		1.323	1.721	1.840	1.988	2.080	2.189	2.518	2.831	3.819
22		1.321	1.717	1.835	1.983	2.074	2.183	2.508	2.819	3.792
23	0.858	1.319	1.714	1.832	1.978	2.069	2.177	2.500	2.807	3.768
24		1.318	1.711	1.828	1.974	2.064	2.172	2.492	2.797	
25		1.316	1.708							3.745
				1.825	1.970	2.060	2.167	2.485	2.787	3.725
2 6		1.315	1.706	1.822	1.967	2.056	2.162	2.479	2.779	3.707
27		1.314	1.703	1.819	1.963	2.052	2.158	2.473	2.771	3.690
28		1.313	1.701	1.817	1.960	2.048	2.154	2.467	2.763	3.674
29	0.854	1.311	1.699	1:814	1.957	2.045	2.150	2.462	2.756	3.659
30		1.310	1.697	1.812	1.955	2.042	2.147			
	1			1.012	1.500	2.042	4.141	2.457	2.750	3.646
31		1.309	1.696	1.810	1.952	2.040	2.144	2.453	2.744	3.633
32	0.853	1.309	1.694	1.808	1.950	2.037	2.141	2.449	2.738	3.622
33		1.308	1.692	1.806	1.948	2.035				
34		1.307	1.691				2.138	2.445	2.733	3.611
				1.805	1.946	2.032	2.136	2.441	2.728	3.601
35		1.306	1.690	1.803	1.944	2.030	2.133	2.438	2.724	3.591
3 6		1.306	1.688	1.802	1.942	2.028	2.131	2.434	2.719	3.582
37	0.851	1.305	1.687	1.800	1.940	2.026	2.129	2.431	2.715	3.574
38	0.851	1.304	1.686	1.799	1.939	2.024	2.127			
39		1.304	1.685	1.798				2.429	2.712	3.566
40					1.937	2.023	2,125	2.426	2.708	3.558
40		1.303	1.684	1.796	1.936	2.021	2.123	2.423	2.704	3.551
41	0.850	1.303	1.683	1.795	1.934	2.020	9 102	0.401	0.504	
42		1.302	1.682	1.794			2.121	2.421	2.701	3.544
43					1.933	2.018	2.120	2.418	2.698	3.538
		1.302	1.681	1.793	1.932	2.017	2.118	2.416	2.695	3.532
44	0.850	1.301	1.680	1.792	1.931	2.015	2.116	2.414	2.692	3.526
45	0.850	1.301	1.679	1.791	1.929	2.014	2.115	2.412	2.690	3.520
46	0.850	1.300	1.679	1.790	1.928	2.013	2.114			
47	0.849	1.300	1.678	1.789				2.410	2.687	3.515
48	0.849				1.927	2.012	2.112	2.408	2.685	3.510
		1.299	1.677	1.789	1.926	2.011	2.111	2.407	2.682	3.505
49	0.849	1.299	1.677	1.788	1.925	2.010	2.110	2.405	2.680	3.500
50	0.849	1.299	1.676	1.787	1.924	2.009	2.109	2.403	2.678	3.496
60	0.040								4.010	J.490
	0.848	1.296	1.671	1.781	1.917	2.000	2.099	2.390	2.660	3.460
70	0.847	1.294	1.667	1.776	1.912	1.994	2.093	2.381	2.648	3.435
80	0.846	1.292	1.664	1.773	1.908	1.990	2.088	2.374	2.639	3.416
90	0.846	1.291	1.662	1.771	1.905	1.987				
100	0.845	1.290	1.660				2.084	2.368	2.632	3.402
		1.230	1.000	1.769	1.902	1.984	2.081	2.364	2.626	3.390
120	0.845	1.289	1.658	1.766	1.899	1.980	2.076	9 250	9 61 #	
140	0.844	1.288	1.656	1.763				2.358	2.617	3.373
180	0.844	1.286			1.896	1.977	2.073	2.353	2.611	3.361
	1		1.653	1.761	1.893	1.973	2.069	2.347	2.603	3.345
200	0.843	1.286	1.653	1.760	1.892	1.972	2.067	2.345	2.601	3.340
500	0.842	1.283	1.648	1.754	1.885	1.965	2.059	2.334	2.586	3.310
1000	0.842	1.282	1.646	1.752	1.883	1.962	2.056	2.330		
00	0.842	1.282	1.645	1.751	1.881	1.960			2.581	3.300
			*****			1.300	2.054	2.326	2.576	3.291
	60%	80%	90%	92%	94%	95%	96%	98%	99%	99.9%
	ì							50/0	<i>337</i> 0	50.970
	<u> </u>				Confid	ence Leve	el			
3.7	./ 1									

Note: $t(\infty)_{\alpha/2} = Z_{\alpha/2}$ in our notation.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

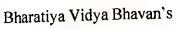
END SEM / RE-EXAMINATION - MAY 2025

Program: BTech Mechanical Scu VIII

Duration: 3hr

Course Code: PE-BTM734

Maximum Points:100


Semester: VIII

Course Name: Supply Chain Management

Note: Solve any 5 questions out seven

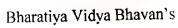
1415725

Q.No.		Questio	ns		Points	СО	BL	Module
•	SCM ar Prepare and exp	a Schematic Diagram ad explain it. a Block Diagram to lain it. Diagram to show flo	show Detergent Sup	ply Chain				
Q1A	it.				10	CO1	3	1
	Electric Prepare and exp	a Block Diagram to lain it.	show Supply Chain	of above		CO1,		,
Q1B	+	ll flows through abov			10	CO4	5	1
	the Digi Develop	the list of Barriers un itization of Supply Co the strategy to over	hain. come them in detail.					
Q2A		teps to building a dig			10	CO3	6	1,6
•	or the indeper variable) for ea line for the data in revenues. A	al system (MHS) own ident variable) and ach hospital are give a, and predict profits all figures are in millional al System Revenues a	profits (y, or the on below. Obtain a for a hospital with \$ cons of dollars.	dependent regression				
	Hospital	Revenue (x)	Profit (y)					
	1	7	0.15					
	2	2	0.10					
	3	6	0.13					
Q2B	4	4	0.15		10	2	5	2

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM / RE EXAMINATION - MAY 2025

		END SENT A			1			
	5	14	0.25					
	6	15	0.27					
	7	16	0.24					
	8	12	0.20					
	9	14	0.27					
	10	20	0.44					
		15	0.34					
	11	7	0.17					•
	12							
	Prepare the	e various techniques ABC analysis of the Annual	IDHOWILE U	ata . Unit Cost (Rs)				
	Item	Units		0.01				
	a	30,000 2800		1.5				
	b	300		0.10				
	C	1100		0.05				
	d	400		0.05				1
	e	2200		1.00				
	1	1500		0.05				
	g			0.05		1		
	h	8000		0.30				
3 A	i	3000		0.10	10	CO2	5	- 3
J		800		Development				1
-	Draw the	KPIV-KPOV base	ed Green	Supplier Development based Green Supplier	l			
	Process	Model Prepare 3	Stagegate b	based Green Supplier	10	CO2	5	3
OD	Develorm	ent Process Model.		C - Customer	The second second second second			
3B	Draw 2 SC	hematic diagram to	show Com	ponents of a Customer Strategic, Tactical, and				Ì
	Order Cv	cle Prenare a Table	showing	Strategic, Tactical, and hould include following	1			
	Order Cy	of Decision Making.	The table sl	hould include following / Strategic/ Tactical /	1	CO1,		
	Operation	Decision area of Su	pply Chain	/ Strategic/ Tactical /	10	CO3	4	4
	columns	Decision area or on	FI V		10	- 003		
24A_	Operation		chowcase	comparison of modal				1
	• Pr	epare a lable to	Showed in S	SCM. The table should Strengths / Limitations				,
	ca	pabilities of Transpo	matter /	Strengths / Limitations				
	co	ontain Mode of trans	sportation /	Strengths / Limitations				
	/P	rimary role / primar	y product c	haracteristics / Example	1			
	Pı	roducts			10	CO2,CO3	15	5
Q4B	• F	xplain it in detail.						


SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM / RE EXAMINATION - MAY 2025

						··						1			7	
	Explain the Te	rm	- " &I+-	ale C	~******	to the	e fol	lowir	າσ							
	Numerical on	Buff	er Sto	CK - C	ompu	ite un	C IOI	IOWII	ıg.						1	1
	Avg Lo			ha.												1
	Avg D	emai	na Ka	te Danana	.a											
	Avg L	ead	lime	Deman	iu	.a										1
	Maxim			ume D	eman	ıa							1	j		
	Buffer	Stoc	:K	. ·	- 41	C- 11.		~ dia	tei ha	tion	for th	ا م	ļ			Ì
	Based on the	past	recor	as give	es the	10110	od ti	g uis	uiou	tiO11	ioi ai					ļ
	lead time and					ne le	au u	me.								
	LEAD TIM	E D	ISTR	IBUT	ION								}			ļ
													Ì			1
					Τ.	T -		T	0	9	10	-				
•	Lead time	0	1	2 3	4	5	6	7	8	9	10			1		
•	in days								<u> </u>						Ì	
	Frequency	0	0	1 2	3	4	4	3	2	2	1			ì		
	Prequency	L				1	<u> </u>	<u> </u>	<u>L</u>	<u>!</u>	<u>}</u> _			1		
												1				
	DEMAND	RA7	CE DI	STRI	BUT	ON								ł		
	Demand/	0	1	2	3	4	ļ	5	6	1	7			ļ		
	day units	"	1	_					-			1 1				
	uay units									1						
			1											COI		
	Fuerrange	3	5	4	5	2	,	3	2		1			CO1 CO2,		3,4,
	Frequency	3	1	7		1	•		-	·	-		10	CO2,		6
Q5A													10	CO3		0 -
																}
								_1 . !	<u>.</u>							
-	Prepare the f	ollo	wing c	letaile	d tabi	e an	d ex	piain	II. . , r	::+	ations	,				2,3,
	Name of in	idust	ry4.0	techn	ology	7 / 1	Pote	nuais	/ 1	JIIIII	auons	′	10	CO1,CO2	5	6
Q5B	Application	in S	CM_			1.1					duoti		10	001,002	<u> </u>	
	Numerical of	on T	ransp	ortatio	n Mo	odei	- A	D1 D	xyge	ng n	Jaucu Jaucu	UII ish				
	company h	as	Five	produ	ction	pia	nts	1,17	2,13	,14,1	dov o	iui Fo				
	production c			shown	in t	able	ın ((00.)	umit	s per	day 0	ıa			1	
	product resp	ectiv	ely.				L	والماء	am a d	to	5 4:4	موا			ļ	
	• Thes	e u	nits a	re ex	pecte	a to	oe 	snij orto	ppeu	W	in toll	103 103			ĺ	
	DI,I)2,D	,D4,	D5, D6) WILL	requ	nten Light	, ICIIIS	as si	(UWI)	111 (21)	ΛĬĊ				
	in (.00	unit	per da	ay res	pect	ivel)	', t h at	11000	fact	ories s	nd				
	• The	trans	portat	ion cos	st in h	cs pe	r uill	e den	WCCII	Tact	niics s	иIU		COI,		
	cities	sare	given	in tab	1e.	initio	.1 1-	acia	eali	ution	to	the		CO2,		
051				to f		mull	n D	asic	SOIL	iiiUII	LU	1110	10	CO2,	5	5
Q6A	trans	port	auon	probler	11.								1.0	1 000	<u> </u>	

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM / RE EXAMINATION - MAY 2025

	problem. F	ind pe	rcentag	e redu	ction i	n tran	spo	ransportation rtation cost.				
	Production facility Pi/ City demand Di	D1	D2	D3	D4	D5	D6	Supply Capacity				
	P1	19	24	15	28	19	26	17				
	P2	13	17	19	13	13	21	13				
	_P3	21	14	24	17	15	25	22				•
	P4	16	23	14	16	17	18	28				
	P5	22	18	21	19	29	31	15				
	Oxygen Demand	24	13	17	16	12	13	95				
	Develop the veno What are the feat	ures o	f SCOI	K mode	21 01 30				10	CO1, CO4, CO3	5	3,
5B	The manager of a on all orders. A delivered to park roses is as follow	All floor cer by	1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	ro mur	enasea	CHI	e da	ily demand of	t e			•
	Dozens of Roses	70	80)	90		10	00				
	Probabilities	0.1		.2	0.4		0.					
				for Re	10 per	doze	en ai	nd sell them fo		CO1,		
	The manager pu	n, All zen of	unsold	roses should	are un	rdere	d e	ach evening to	10	CO2, CO3	5	1
)7A	The manager pu	n. All zen of rofit?	unsold roses What is	should the ex	are do 1 be o pected	rdere prof	d ea it?	ation in Suppl	10 y		5	3 7

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Examination May-2025

Program: B. Tech Mechanical June VIII

Duration: 3 Hour

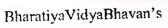
Maximum Points: 100

Semester: VIII

Course Code: PE BTM756

Course Name: Renewable Energy Sources and Utilization

Notes:

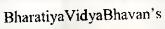

1) Question number ONE is compulsory and solve any FOUR out of remaining SIX questions.

2) Use of steam table, refrigeration properties table and Gamma function table is permitted.

3) Draw neat sketches wherever required.

4) Assume suitable data and justify the same.

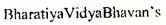
).No	Questions	Points	со	BL	Module Number
1(a)	Discuss the electricity production of India and compare how much the consumption per person is in India as compared to the world's per-person consumption.				
I(b)	What is geothermal energy? Explain it in short.	20	1,2,4	1,2	1,2,6,7
l(c)	Draw a neat sketch of the Deenbandhu model bio-gas plant.				
1(d)	Discuss the effect of tilt angle solar liquid flat plate collector.				
2(a)	Explain the method of manufacturing single crystal silicon solar cell with neat sketch.	10	1	1,2	3
2(b)	power output per unit cell area? Given that charge of an electron, $e = 1.602 \times 10^{-19}$ J/V and	10	2	3	3
3(a)	Calculate the overall loss coefficient for a flat place with two glass covers by calculation. (Without using empirical with two glass covers by calculation.)	12	2	3,4	2



(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination May-2025

	Spacing between first and the second glass cover (L) : 4 cm. Plate emissivity (ε_P) : 0.92 Glass cover emissivity (ε_C) : 0.88 Collector tilt (β) : 20° Mean Plate temperature (T_{Pm}) : 70°C Ambient air temperature (T_a) : 24°C Wind speed (V_∞) : 2.5 m/s Back insulation thickness (δ_b) : 8 cm Side insulation thickness (δ_s) : 4 cm Thermal conductivity of insulation (k_l) : 0.05 W/m-K Note: Use correlations and properties of air given on subsequent pages.				
3(b)	Explain with neat sketch the production of biogas by Khadi Village Industrial Corporation (KVIC) model.	08	1	1	7
4(a)	Classify the water turbines. Write in detail about the Kaplan propeller turbine and the Francis propeller turbine with a neat sketch of each.	10	3	1,2	5
4(b)	Calculate the efficiency of a closed-cycle OTEC system using ammonia as the working fluid and installed at a location where the warm and cold sea water streams are at temperatures of 29°C and 8°C, respectively. Make an allowance of about 5°C for the temperature difference required in the evaporator and condenser for transferring heat, and assume that the ammonia is evaporating at 24°C and condensing at 13°C. Take the isentropic efficiencies of the turbine and pump to be 90 and 80 per cent, respectively.	10	3	3,4	5
5(a)	Explain how geothermal energy is renewable energy. Also, explain the closed cycle and open cycle house heating systems	10	4	2	6
5(b)	Draw a neat schematic diagram of a downdrant gashier and explain the biomass gasification process in detail.	10	4	1,2	7
6(a)	Calculate the actual energy available for the wind machine for which the cut-in speed is 14 kmph, the design speed is 30 kmph, and the cut-out speed is 90 kmph for the following location.	10	2	1,2	3



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination May-2025

		L	ocation:	Kandla	a Port							
}		N	Month: De	cembe	er							
		T	Take p for	air=	1.20 kg/1	n ³ .						
							1 7	Dec				
	Interval	Dec	Interval	Dec	Interval	Dec	Interval					
	00	2.2	10-12	7.5	22-24	7.8	34-36	0.4				
	00-02	2.4	12-14	8.4	24-26	5.4	36-38	0.1				
	02-04	2.7	14-16	10.3	26-28	3.2						
	04-06	3.0	16-18	11.2	28-30	2.5						
	06-08	4.4	18-20	11.5	30-32	1.2						
	08-10	6.5	20-22	9.0	32-34	0.3						
6(b)	Diselen	ide (CI etch.	GS) thin	film 1	multi-cry	stallin	Indium C e solar ce	all with	10	2	1,2	3
7(a)	Explain in detai	the me	ethod of I	Bio-etl	anol and	d Bio-o	liesel pro	duction	10	3	3	7
7(b)	produced digeston feed marke: (e 2 kW r of the aterial. Calorifi Efficies	of electr	ic pov ant rec bioga nerator	ver. Esta quired, if us : 20,00	mate ti cow d 0 kJ/m per cer	gas is inst he volume ung is use nt	e or me		1	3	4

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester Examination May-2025

Data Sheet and Properties of Air

1. Relationship between Nusselt and Rayleigh numbers.

Nu_L = 1 ; Ra_L cos
$$\beta$$
 < 1708
Nu_L = 1 + 1.446 $\left(1 - \frac{1708}{\text{Ra}_L \cos \beta}\right)$; 1708 < Ra_L cos β < 5900
Nu_L = 0.229 (Ra_L cos β)^{0.252}; 5900 < Ra_L cos β < 9.23 × 10⁴
Nu_L = 0.157 (Ra_L cos β)^{0.285}; 9.23 × 10⁴ < Ra_L cos β < 10⁶

$$h_w = 8.55 + 2.56 \text{ V}_{\infty}$$

T C	p kg/m²	Cj. KJ/kg-K	μ×10 ⁶ N-s/m ²	k W∕m-K	Pr	$v \times 10^6$ m ² /s
0	1.293	1,008	17.2	0.0244	0.707	13.28
10	1.247	Loos	17.7	0.0251	0.705	14.16
20	1,205	1.005	18.1	0.0259	0.703	15.06
30	1.165	1.005	18.6	0.0267	0.701	16.00
40	1.128	1.005	19.1	0.0276	0.699	1696
50	1,093	1.005	19.6	0.0283	0.698	17.95
60	1.060	1.005	20.1	0.0290	0.696	18.97
70	1.029	1.009	20.6	0.0297	0.694	20.02
	1.000	1.009	21.1	0.0305	0.692	21.09
80	0.972	1.009	21.5	0.0313	0.690	22.10
90	0.946	1.009	21.9	0.0321	0.688	23.13
100	0.898	1.009	22.9	0.0334	0.686	25.45
120	0.854	1.013	23.7	0.0349	0.684	27.80
140		1.017	24.5	0.0364	0.682	30.09
160	0.815	1.022	25.3	0.0378	0.68)	32.49
180	0.779	1.026	26.0	0.0393	0.680	34.85
200	0.746	1.020	27.4	0.0427	0.677	40.61
250	0.674	1.047	29,7	0.0461	0.674	48.33
300	0.615	1.059	31.4	0.0491	0.676	55.46
350	0.566	1.068	33,0	0.0521	0.678	63.09
400	0.524	1,093	36.2	0.0575	0.687	79.38
500	0.456		39.1	0.0622	0.699	96.89
600	0.404	1.114	41.8	0.0671	0.706	115.4
700	0.362	1.135	44.3	0.0718	0.713	134.5
800	0.329	1.156		0.0763	0.717	155.
9000	0.301	1.172	46.7	0.0807	0.719	177.
1000	0.277	1,185	49.0	U.CO.		_

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMSTER / RE-EXAMINATION, TERM-II, A.Y. 2024-25

Program: B. Tech. Mechanical July VIII

Course Code: PEC-BTM 754

Course Name: Power Plant Engineering

Duration: 3 Hours

Maximum Points: 100

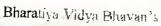
Semester: VIII

Notes:

1) Solve: Any FIVE Questions.

2) Answers must be **SPECIFIC** and in **legible** handwriting.

3) Draw neat, labelled system and process diagrams wherever asked or necessary.

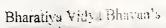

4) Illustrate your answers with suitable examples wherever asked or necessary.

5) Use separate Graph papers for drawing load curve and load duration curve in Q.1.

6) Use separate Graph papers for drawing Hydrograph and Flow duration curve in Q.2.

7) Assume suitable data wherever necessary and state the same.

Q. No.		Question									Module
1.	a) Explain with signature factor iv) Use factor	'		ctor ii) C	apacity f	actor iii) F	Reserve	8	1	11	- 1
	b) A power station	supplies lo	ad for 24	hours as	shown i	n the table	e below.				
	Time (Hours	0-6	6-12	12-14	14-18	18-24			1	V,	
	Load (M)	V) 45	135	90	150	75		12	4	Vi	1
	Construct: i) Load		·			r the abo	ve data.				
2.	a) Explain with single curve and iv) Mass		i) Run-o	ff ii) Hyd	lrogr aph	iii) Flow	duration	8	2	11	2
	b) The run-off data plant at a site for 1 80 m, turbine e Construct: i) Hyd	2 months is	s given in 90% a	table. T	he water erator el	head ava	ailable is 95%.	12	2. 4	V _r VI	2



(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMSTER / RE-EXAMINATION, TERM-II, A.Y. 2024-25

	- 		Ţ 		, , = 1 (M-1), A. (2024-2	.5				
		Month	Discharge Q (million m³)	Month	Discharge						
		January	40	July	Q (million m³)						
ļ		February	25	August	75						
		March	20	September	100						
		Аргіl	10	October	110						
İ		May	0	November	60						
		June	50	December	50 40						
	Assume	ion to cus e: each mon	ity of the reservatomer. Recomment of 30 days.	oir required, nend: Suita	iii) Power availa ble hydraulic t	urbine.					**
3.	a) Expl	ain: Princip	le of working of	Fluidized Be	ed Combustion	(FBC)		+-	11		_
	System.	Draw: Neat	sketch of basic i	FBC system.			8	2	11,	3	
1	b) State	: Modificati	ons in the simple	gas turbine	plant for improvi	na the	·		 		\downarrow
	efficiency	y. In a gas t	urbine power pla	int the comp	rana ret ittle -	ing the					
	ratio 4 a	nd isentropia	c efficiency gard	are the combi	essul with a pre	essure i					
	then page	and the	c efficiency 82%,	takes in the	air at 15°C. The	air is					
	ulei pas	sea inrough	a regenerator wit	h 78% effective	veness. The max	kimum		1			
	temperat	ure after the	e constant press	ure combusti	ion is 600°C. Τι	Irhina			1		
	efficiency	is 70%. N	eglecting all othe	er losses eye	ent those state	al – al	12	2	HI	5	
	assuming	air as the v	work fluid in the c	vole Evalua	to: Thereal ass	and		4	VI		
	of cycle. I	Draw: Neat:	system diagram a	and To discus	te: Thermal effic	ency			1		
	heat capa	acity and ad	iohotia at	anu i-s diagra	ım. Assume: Sp	ecific		}			
	Thous outpo	oity and ad	iabatic constant	for air as c_{pa}	= 1.005 kJ/kg. l	< and					4
·	$\gamma_a = 1.4 \text{ re}$	espectively.				}					
4.	a) Descri	be: Essentia	al elements of a	nuclear reacte	or with their fund	tions					
	and featur	es. Draw: N	leat system diag	ram	a martaleti tütic	uons	10	2	li,	4	
	b) Expla	in: Workir	ng of CANDU						Ш		
	disadvanta	egon Drawn	IS OF CANDO	reactor, it	s advantages	and			11,		
	dioddydfile	ages. Draw;	Neat system dia	gram.			10	2	III,	4	
									IV	- 1	
5.	a) Explain	: Working o	f simple Closed	Cycle Gas Tu	Irbine Plant (CC	GT)			11,		
	Draw: A n	eat system	diagram and T-s	diagram. Co	mpare: Advant	2000	8		1		
	and disadv	antages of	OCGT and CCG	l' nlante	····pararragianti	49 0 3	٠	2	111	5	
				- Piarito.	-				IV		

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMSTER / RE-EXAMINATION, TERM-II, A.Y. 2024-25

			The - \		-		
	b) Explain: i) Work ratio and ii) Air rate f	or a gas turbi	ne plant. The	ļ			
	following data refers to a gas turbine plant t	ising a reheate	r between the				
	two turbines.		- las				
	Power developed = 5 MW, Inlet pressu	re and tempe	erature to the				
	compressor = 1 bar, 30°C, Pressure ratio	= 5, Isentropi	c efficiency of			П,	
	compressor = 80%, Isentropic efficiency	y of each tui	rbine = 85%,	12	2,	111,	5
	Intermediate pressure for reheating = 2.24	bar, specific he	eat capacity for		4	VI	
	air and gas are c_{pa} = 1 kJ/kg. K and c_{pg} = 1	1.15 kJ/kg. K re	espectively, the				
	adiabatic constant for air and gases ar	e γ_a = 1.4 a	and γ_g = 1.33			ļ	
	respectively. Evaluate: i) Mass flow rate of	f air and ii) The	ermal efficiency				
	of the cycle. Neglect: The mass of fuel. Dra	aw: Neat syste	m diagram and				
	T-s diagram.						
6.	a) Describe: Simple Gas Turbine cycle co	ombined with S	Single Pressure				
•	Steam Turbine cycle (SGT1ST). Draw: N	leat system di	agram and T-s	8	2	I, II	6
	Diagram.						
	b) Compare: Favorable and adverse feat	ures of hydroel	ectric plant and				
	steam power plant for its use as a base loa						
	It is proposed to supply a maximum dema						
	of 70%. Choice is to be made between a	nydroelectric a	nd steam power	•			
	plant. Evaluate: The overall cost per kWh						
	plant from scheme of cost elements sho						
	maximum demand equal to the plant cap			r		IV,	
	plant and Justify: your recommendation.			12		' V	1,
	Element of cost	Steam	Hydroelectric		4	4	
	Element of cost	power plant	power plant		ļ		
	Capital cost per MW installed	Rs. 3 Crore	Rs. 4 Crore				
	interest on capital	6 %	5 %	-			
	Depreciation	6 %	4 %				
	Operating cost per kWh(including fuel)	Rs. 0.30	Rs. 0.05				
	Transmission and distribution cost per kWh	Rs. 0.02	Rs. 0.03				

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMSTER / RE-EXAMINATION, TERM-II, A.Y. 2024-25

7.	a) Explain: Nuclear waste from a nuclear power plant. Discuss: its Environmental impact in terms of hazards.	6	3	11, 111	4,7
	b) Explain: Methods of disposal of various nuclear wastes. Draw: Neat sketches of systems involved.	6			
	c) State: Various methods of controlling SO ₂ emission from thermal power plants. Explain: Working of a wet scrubber for the same. Draw: Neat schematic diagram of the system.	8	3	1 ₇ 11, 111	7